Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.962
Filtrar
1.
Emerg Med Pract ; 26(5): 1-24, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38639638

RESUMO

Ketamine has been in use since its development as a dissociative anesthetic in the 1960s, but it was largely confined to the operating theater or austere environments until used by emergency physicians to facilitate painful procedures in children. As the unique effects of ketamine across its dose-response curve were understood, new applications emerged. In low doses, ketamine has found an important role alongside or instead of opioids in the management of severe pain, and methods to slow its absorption allow higher, more effective doses while attenuating psychoperceptual effects. Ketamine's unique anesthetic properties have inspired its use as an induction agent for intubation without a paralytic and for the rapid, safe control of dangerously agitated patients. Emerging uses for ketamine in acute care include treatment for status epilepticus and alcohol withdrawal syndrome; however, its most important rising indication may be as an emergency treatment of depression and suicidality.


Assuntos
Alcoolismo , Ketamina , Síndrome de Abstinência a Substâncias , Criança , Humanos , Ketamina/uso terapêutico , Ketamina/farmacologia , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Anestésicos Dissociativos/uso terapêutico , Dor/tratamento farmacológico , Serviço Hospitalar de Emergência
2.
PLoS One ; 19(4): e0301848, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38640139

RESUMO

Ketamine has been shown to produce analgesia in various acute and chronic pain states; however, abuse liability concerns have limited its utility. The ketamine metabolite (2R,6R)-hydroxynorketamine (HNK) has been shown to produce antidepressant-like effects similar to ketamine without abuse liability concerns. (2R,6R)-HNK produces sustained analgesia in models of chronic pain, but has yet to be evaluated in models of acute pain. The present study evaluated the efficacy of acute (2R,6R)-HNK administration (one injection) in assays of pain-stimulated (52- and 56-degree hot plate test and acetic acid writhing) and pain-depressed behavior (locomotor activity and rearing) in male and female C57BL/6 mice. In assays of pain-stimulated behaviors, (2R,6R)-HNK (1-32 mg/kg) failed to produce antinociception in the 52- and 56-degree hot plate and acetic acid writhing assays. In assays of pain-depressed behaviors, 0.56% acetic acid produced a robust depression of locomotor activity and rearing that was not blocked by pretreatment of (2R,6R)-HNK (3.2-32 mg/kg). The positive controls morphine (hot plate test) and ketoprofen (acetic acid writhing, locomotor activity, and rearing) blocked pain-stimulated and pain-depressed behaviors. Finally, the effects of intermittent (2R,6R)-HNK administration were evaluated in 52-degree hot plate and pain-depressed locomotor activity and rearing. Intermittent administration of (2R,6R)-HNK also did not produce antinociceptive effects in the hot plate or pain-depressed locomotor activity assays. These results suggest that (2R,6R)-HNK is unlikely to have efficacy in treating acute pain; however, the efficacy of (2R,6R)-HNK in chronic pain states should continue to be evaluated.


Assuntos
Dor Aguda , Dor Crônica , Ketamina , Ketamina/análogos & derivados , Camundongos , Masculino , Feminino , Animais , Ketamina/farmacologia , Ketamina/uso terapêutico , Dor Aguda/tratamento farmacológico , Camundongos Endogâmicos C57BL , Acetatos
3.
J Affect Disord ; 355: 342-354, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38570038

RESUMO

BACKGROUND: Electrophysiologic measures provide an opportunity to inform mechanistic models and possibly biomarker prediction of response. Serotonergic psychedelics (SPs) (i.e., psilocybin, lysergic acid diethylamide (LSD)) and ketamine represent new investigational and established treatments in mood disorders respectively. There is a need to better characterize the mechanism of action of these agents. METHODS: We conducted a systematic review investigating the spectral signatures of psilocybin, LSD, and ketamine in persons with major depressive disorder (MDD), treatment-resistant depression (TRD), and healthy controls. RESULTS: Ketamine and SPs are associated with increased theta power in persons with depression. Ketamine and SPs are also associated with decreased spectral power in the alpha, beta and delta bands in healthy controls and persons with depression. When administered with SPs, theta power was increased in persons with MDD when administered with SPs. Ketamine is associated with increased gamma band power in both healthy controls and persons with MDD. LIMITATIONS: The studies included in our review were heterogeneous in their patient population, exposure, dosing of treatment and devices used to evaluate EEG and MEG signatures. Our results were extracted entirely from persons who were either healthy volunteers or persons with MDD or TRD. CONCLUSIONS: Extant literature evaluating EEG and MEG spectral signatures indicate that ketamine and SPs have reproducible effects in keeping with disease models of network connectivity. Future research vistas should evaluate whether observed spectral signatures can guide further discovery of therapeutics within the psychedelic and dissociative classes of agents, and its prediction capability in persons treated for depression.


Assuntos
Transtorno Depressivo Maior , Alucinógenos , Ketamina , Humanos , Psilocibina/uso terapêutico , Ketamina/farmacologia , Ketamina/uso terapêutico , Dietilamida do Ácido Lisérgico/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Depressão , Voluntários Saudáveis , Alucinógenos/efeitos adversos
4.
Eur Psychiatry ; 67(1): e33, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572583

RESUMO

BACKGROUND: Amygdala subregion-based network dysfunction has been determined to be centrally implicated in major depressive disorder (MDD). Little is known about whether ketamine modulates amygdala subarea-related networks. We aimed to investigate the relationships between changes in the resting-state functional connectivity (RSFC) of amygdala subregions and ketamine treatment and to identify important neuroimaging predictors of treatment outcomes. METHODS: Thirty-nine MDD patients received six doses of ketamine (0.5 mg/kg). Depressive symptoms were assessed, and magnetic resonance imaging (MRI) scans were performed before and after treatment. Forty-five healthy controls underwent one MRI scan. Seed-to-voxel RSFC analyses were performed on the amygdala subregions, including the centromedial amygdala (CMA), laterobasal amygdala (LBA), and superficial amygdala subregions. RESULTS: Abnormal RSFC between the left LBA and the left precuneus in MDD patients is related to the therapeutic efficacy of ketamine. There were significant differences in changes in bilateral CMA RSFC with the left orbital part superior frontal gyrus and in changes in the left LBA with the right middle frontal gyrus between responders and nonresponders following ketamine treatment. Moreover, there was a difference in the RSFC of left LBA and the right superior temporal gyrus/middle temporal gyrus (STG/MTG) between responders and nonresponders at baseline, which could predict the antidepressant effect of ketamine on Day 13. CONCLUSIONS: The mechanism by which ketamine improves depressive symptoms may be related to its regulation of RSFC in the amygdala subregion. The RSFC between the left LBA and right STG/MTG may predict the response to the antidepressant effect of ketamine.


Assuntos
Tonsila do Cerebelo , Antidepressivos , Transtorno Depressivo Maior , Ketamina , Imageamento por Ressonância Magnética , Humanos , Ketamina/farmacologia , Ketamina/administração & dosagem , Ketamina/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/fisiopatologia , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiopatologia , Masculino , Feminino , Adulto , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos/administração & dosagem , Pessoa de Meia-Idade , Resultado do Tratamento
5.
Elife ; 132024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629811

RESUMO

Background: Ketamine has emerged as one of the most promising therapies for treatment-resistant depression. However, inter-individual variability in response to ketamine is still not well understood and it is unclear how ketamine's molecular mechanisms connect to its neural and behavioral effects. Methods: We conducted a single-blind placebo-controlled study, with participants blinded to their treatment condition. 40 healthy participants received acute ketamine (initial bolus 0.23 mg/kg, continuous infusion 0.58 mg/kg/hr). We quantified resting-state functional connectivity via data-driven global brain connectivity and related it to individual ketamine-induced symptom variation and cortical gene expression targets. Results: We found that: (i) both the neural and behavioral effects of acute ketamine are multi-dimensional, reflecting robust inter-individual variability; (ii) ketamine's data-driven principal neural gradient effect matched somatostatin (SST) and parvalbumin (PVALB) cortical gene expression patterns in humans, while the mean effect did not; and (iii) behavioral data-driven individual symptom variation mapped onto distinct neural gradients of ketamine, which were resolvable at the single-subject level. Conclusions: These results highlight the importance of considering individual behavioral and neural variation in response to ketamine. They also have implications for the development of individually precise pharmacological biomarkers for treatment selection in psychiatry. Funding: This study was supported by NIH grants DP5OD012109-01 (A.A.), 1U01MH121766 (A.A.), R01MH112746 (J.D.M.), 5R01MH112189 (A.A.), 5R01MH108590 (A.A.), NIAAA grant 2P50AA012870-11 (A.A.); NSF NeuroNex grant 2015276 (J.D.M.); Brain and Behavior Research Foundation Young Investigator Award (A.A.); SFARI Pilot Award (J.D.M., A.A.); Heffter Research Institute (Grant No. 1-190420) (FXV, KHP); Swiss Neuromatrix Foundation (Grant No. 2016-0111) (FXV, KHP); Swiss National Science Foundation under the framework of Neuron Cofund (Grant No. 01EW1908) (KHP); Usona Institute (2015 - 2056) (FXV). Clinical trial number: NCT03842800.


Ketamine is a widely used anesthetic as well as a popular illegal recreational drug. Recently, it has also gained attention as a potential treatment for depression, particularly in cases that don't respond to conventional therapies. However, individuals can vary in their response to ketamine. For example, the drug can alter some people's perception, such as seeing objects as larger or small than they are, while other individuals are unaffected. Although a single dose of ketamine was shown to improve depression symptoms in approximately 65% of patients, the treatment does not work for a significant portion of patients. Understanding why ketamine does not work for everyone could help to identify which patients would benefit most from the treatment. Previous studies investigating ketamine as a treatment for depression have typically included a group of individuals given ketamine and a group given a placebo drug. Assuming people respond similarly to ketamine, the responses in each group were averaged and compared to one another. However, this averaging of results may have masked any individual differences in response to ketamine. As a result, Moujaes et al. set out to investigate whether individuals show differences in brain activity and behavior in response to ketamine. Moujaes et al. monitored the brain activity and behavior of 40 healthy individuals that were first given a placebo drug and then ketamine. The results showed that brain activity and behavior varied significantly between individuals after ketamine administration. Genetic analysis revealed that different gene expression patterns paired with differences in ketamine response in individuals ­ an effect that was hidden when the results were averaged. Ketamine also caused greater differences in brain activity and behavior between individuals than other drugs, such as psychedelics, suggesting ketamine generates a particularly complex response in people. In the future, extending these findings in healthy individuals to those with depression will be crucial for determining whether differences in response to ketamine align with how effective ketamine treatment is for an individual.


Assuntos
Ketamina , Humanos , Ketamina/farmacologia , Método Simples-Cego , Antidepressivos/farmacologia , Encéfalo
6.
Bull Environ Contam Toxicol ; 112(4): 51, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556558

RESUMO

Esketamine (ESK) is the S-enantiomer of ketamine racemate (a new psychoactive substance) that can result in illusions, and alter hearing, vision, and proprioception in human and mouse. Up to now, the neurotoxicity caused by ESK at environmental level in fish is still unclear. This work studied the effects of ESK on behaviors and transcriptions of genes in dopamine and GABA pathways in zebrafish larvae at ranging from 12.4 ng L- 1 to 11141.1 ng L- 1 for 7 days post fertilization (dpf). The results showed that ESK at 12.4 ng L- 1 significantly reduced the touch response of the larvae at 48 hpf. ESK at 12.4 ng L- 1 also reduced the time and distance of larvae swimming at the outer zone during light period, which implied that ESK might potentially decrease the anxiety level of larvae. In addition, ESK increased the transcription of th, ddc, drd1a, drd3 and drd4a in dopamine pathway. Similarly, ESK raised the transcription of slc6a1b, slc6a13 and slc12a2 in GABA pathway. This study suggested that ESK could affect the heart rate and behaviors accompanying with transcriptional alterations of genes in DA and GABA pathways at early-staged zebrafish, which resulted in neurotoxicity in zebrafish larvae.


Assuntos
Dopamina , Ketamina , Humanos , Animais , Camundongos , Dopamina/metabolismo , Dopamina/farmacologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Ketamina/metabolismo , Ketamina/farmacologia , Larva , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia
7.
Biochim Biophys Acta Gen Subj ; 1868(5): 130595, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467309

RESUMO

Cytochrome P450 mediated substrate metabolism is generally characterized by the formation of reactive intermediates. In vitro and in vivo reaction uncoupling, results in the accumulation and dissociation of reactive intermediates, leading to increased ROS formation. The susceptibility towards uncoupling and altered metabolic activity is partly modulated by pharmacogenomic alleles resulting in amino acid substitutions. A large variability in the prevalence of these alleles has been demonstrated in CYP2B6, with some being predominantly unique to African populations. The aim of this study is to characterize the uncoupling potential of recombinant CYP2B6*1, CYP2B6*6 and CYP2B6*34 metabolism of specific substrates. Therefore, functional effects of these alterations on enzyme activity were determined by quantification of bupropion, efavirenz and ketamine biotransformation using HPLC-MS/MS. Determination of H2O2 levels was performed by the AmplexRed/horseradish peroxidase assay. Our studies of the amino acid substitutions Q172H, K262R and R487S revealed an exclusive use of the peroxide shunt for the metabolism of bupropion and ketamine by CYP2B6*K262R. Ketamine was also identified as a trigger for the peroxide shunt in CYP2B6*1 and all variants. Concurrently, ketamine acted as an uncoupler for all enzymes. We further showed that the expressed CYP2B6*34 allele results in the highest H2O2 formation. We therefore conclude that the reaction uncoupling and peroxide shunt are directly linked and can be substrate specifically induced with K262R carriers being most likely to use the peroxide shunt and R487S carrier being most prone to reaction uncoupling. This elucidates the functional diversity of pharmacogenomics in drug metabolism and safety.


Assuntos
Bupropiona , Citocromo P-450 CYP2B6 , Ketamina , Alelos , Bupropiona/metabolismo , Bupropiona/farmacologia , Citocromo P-450 CYP2B6/efeitos dos fármacos , Citocromo P-450 CYP2B6/genética , Peróxido de Hidrogênio , Ketamina/metabolismo , Ketamina/farmacologia , Farmacogenética , Espécies Reativas de Oxigênio , Espectrometria de Massas em Tandem , Humanos
8.
ACS Chem Neurosci ; 15(7): 1335-1341, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38506562

RESUMO

Ketamine is a common anesthetic used in human and veterinary medicine. This drug has recently received increased medical and scientific attention due to its indications for neurological diseases. Despite being applied for decades, ketamine's entire metabolism and pharmacological profile have not been elucidated yet. Therefore, insights into the metabolism and brain distribution are important toward identification of neurological effects. Herein, we have investigated ketamine and its metabolites in the pig brain, cerebrospinal fluid, and plasma using mass spectrometric and metabolomics analysis. We discovered previously unknown metabolites and validated their chemical structures. Our comprehensive analysis of the brain distribution of ketamine and 30 metabolites describes significant regional differences detected mainly for phase II metabolites. Elevated levels of these metabolites were identified in brain regions linked to clearance through the cerebrospinal fluid. This study provides the foundation for multidisciplinary studies of ketamine metabolism and the elucidation of neurological effects by ketamine.


Assuntos
Ketamina , Animais , Encéfalo/metabolismo , Ketamina/farmacologia , Espectrometria de Massas , Metabolômica , Suínos
9.
Artigo em Inglês | MEDLINE | ID: mdl-38552775

RESUMO

There is an urgent need for novel antidepressants, given that approximately 30% of those diagnosed with depression do not respond adequately to first-line treatment. Additionally, monoaminergic-based antidepressants have a substantial therapeutic time-lag, often taking months to reach full therapeutic effect. Ketamine, an N-methyl-d-aspartate receptor (NMDAR) antagonist is the only current effective rapid-acting antidepressant, demonstrating efficacy within hours and lasting up to two weeks with an acute dose. Reelin, an extracellular matrix glycoprotein, has demonstrated rapid-acting antidepressant-like effects at 24 h, however the exact timescale of these effects has not been investigated. To determine the short and long-term effects of reelin, female Long Evans rats (n = 120) underwent a chronic corticosterone (CORT; or vehicle) paradigm (40 mg/kg, 21 days). On day 21, rats were treated with reelin (3µg; i.v.), ketamine (10 mg/kg; i.p.), both reelin and ketamine (same doses), or vehicle (saline). Behavioural and biological effects were then evaluated at 1 h, 6 h, 12 h, and 1 week after treatment. The 1-week cohort continued CORT injections to ensure the effect of chronic stress was not lost. Individually, both reelin and ketamine significantly rescued CORT-induced behaviour and hippocampal reelin expression at all timepoints. Ketamine rescued a decrease in dendritic maturity as induced by CORT. Synergistic effects of reelin and ketamine appeared at 1-week, suggesting a potential additive effect of the antidepressant-like actions. Taken together, this study provides further support for reelin-based therapeutics to develop rapid-acting antidepressant.


Assuntos
Corticosterona , Ketamina , Animais , Feminino , Ratos , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Corticosterona/metabolismo , Depressão/tratamento farmacológico , Depressão/induzido quimicamente , Hipocampo/metabolismo , Ketamina/farmacologia , Ketamina/uso terapêutico , Ratos Long-Evans , Proteína Reelina/farmacologia , Proteína Reelina/uso terapêutico
10.
Psychiatry Res ; 335: 115829, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479192

RESUMO

This nonrandomized, multicenter, open-label clinical trial explored the impact of intravenous (IV) ketamine on cognitive function in adults (n = 74) with treatment-resistant depression (TRD). Patients received three IV ketamine infusions during the acute phase and, if remitted, four additional infusions in the continuation phase (Mayo site). Cognitive assessments using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) were conducted at baseline, end of the acute phase, and end of the continuation phase (Mayo site). Results showed a significant 53 % (39/74) remission rate in depression symptoms after the acute phase. In adjusted models, baseline language domain score was associated with a higher odd of remission (Odds Ratio, 1.09, 95 % CI = 1.03-1.17, p = 0.004) and greater improvement in MADRS at the end of the acute phase (ß =-0.97; 95 % CI, -1.74 to -0.20; P = 0.02). The likelihood of remission was not significantly associated with baseline immediate or delayed memory, visuospatial/constructional, or attention scores. In the continuation phase, improvements in immediate and delayed memory and attention persisted, with additional gains in visuospatial and language domains. Limitations included an open-label design, potential practice effects, and ongoing psychotropic medication use. Overall, the study suggests cognitive improvement, not deterioration, associated with serial IV ketamine administrations for TRD. These findings encourage future studies with larger sample sizes and longer follow-up periods to examine any potential for deleterious effect with recurrent ketamine use for TRD. Trial Registration: ClinicalTrials.gov: NCT03156504.


Assuntos
Transtorno Depressivo Resistente a Tratamento , Ketamina , Adulto , Humanos , Depressão , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Transtorno Depressivo Resistente a Tratamento/psicologia , Infusões Intravenosas , Ketamina/farmacologia , Ketamina/uso terapêutico , Indução de Remissão
11.
Elife ; 122024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512722

RESUMO

Ketamine (KET) and isoflurane (ISO) are two widely used general anesthetics, yet their distinct and shared neurophysiological mechanisms remain elusive. In this study, we conducted a comparative analysis of the effects of KET and ISO on c-Fos expression across the mouse brain, utilizing hierarchical clustering and c-Fos-based functional network analysis to evaluate the responses of individual brain regions to each anesthetic. Our findings reveal that KET activates a wide range of brain regions, notably in the cortical and subcortical nuclei involved in sensory, motor, emotional, and reward processing, with the temporal association areas (TEa) as a strong hub, suggesting a top-down mechanism affecting consciousness by primarily targeting higher order cortical networks. In contrast, ISO predominantly influences brain regions in the hypothalamus, impacting neuroendocrine control, autonomic function, and homeostasis, with the locus coeruleus (LC) as a connector hub, indicating a bottom-up mechanism in anesthetic-induced unconsciousness. KET and ISO both activate brain areas involved in sensory processing, memory and cognition, reward and motivation, as well as autonomic and homeostatic control, highlighting their shared effects on various neural pathways. In conclusion, our results highlight the distinct but overlapping effects of KET and ISO, enriching our understanding of the mechanisms underlying general anesthesia.


Assuntos
Anestésicos , Isoflurano , Ketamina , Camundongos , Animais , Isoflurano/farmacologia , Ketamina/farmacologia , Anestésicos/farmacologia , Inconsciência , Encéfalo , Mapeamento Encefálico
12.
J Zoo Wildl Med ; 55(1): 200-206, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38453503

RESUMO

The maned sloth (Bradypus torquatus) is an endemic and endangered species of two Brazilian states, with much unknown biological information needed to direct conservation actions. Other sloth species have been studied regarding anesthesia; however, there is a lack of anesthesia research for the maned sloth. Anesthetic data were collected from 12 free-range maned sloths that were immobilized for a field examination. Individuals were anesthetized using a combination of ketamine (4.0 mg/kg) and medetomidine (0.03 mg/kg), and antagonized with atipamezole (0.1 mg/kg). Time to induction and recovery were recorded and compared with sex and age classes. After the induction and until antagonist administration, physiological parameters (rectal temperature, heart rate, respiratory rate, and oxygen saturation) were recorded every 10 min during anesthesia and were statistically evaluated over time. Induction was fast (3.21 ± 0.76), but recovery was longer (113.3 ± 18) when compared to other studies. Induction and recovery times were not different across sex or age classes. Rectal temperature, heart rate, and oxygen saturation remained stable throughout the procedure. Respiratory rate significantly decreased over time, from 18.25 ± 7.03 to 13.17 ± 3.66 movements per minute. Our results indicate that the described combination of ketamine and medetomidine is a safe and effective choice for anesthesia of maned sloths.


Assuntos
Anestésicos , Ketamina , Bichos-Preguiça , Humanos , Animais , Medetomidina/farmacologia , Ketamina/farmacologia , Bichos-Preguiça/fisiologia , Animais Selvagens/fisiologia , Anestésicos/farmacologia , Imobilização/veterinária , Imobilização/métodos , Hipnóticos e Sedativos/farmacologia , Frequência Cardíaca , Anestésicos Dissociativos/farmacologia
13.
J Zoo Wildl Med ; 55(1): 207-211, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38453504

RESUMO

Sedation, recovery response, and physiologic outcomes were evaluated in five captive reindeer (Rangifer tarandus) in Minnesota using a completely reversible immobilization protocol. Reindeer were immobilized with butorphanol (0.23-0.32 mg/kg), midazolam (0.23-0.32 mg/kg), and medetomidine (0.15 mg/kg) (BMM) via IM dart. Induction time (IT), recumbency time (DT), and recovery time (RT) were recorded. Temperature (T), respiratory rate (RR), pulse rate (PR), pulse oximetry (SpO2), arterial blood gas values including oxygen (PaO2), and carbon dioxide (PaCO2) tensions and lactate (Lac) were recorded preoxygen supplementation and 15 min postoxygen supplementation. Reversal was done using naltrexone (2.3-3.0 mg/kg), flumazenil (0.008-0.01 mg/kg) and atipamezole (0.62-0.78 mg/kg) (NFA) IM, limiting recumbency to 1 h. Median IT, DT, and RT were 5 min, 46 min, and 7 min, respectively. SpO2 (92 to 99%, P = 0.125), PaO2 (45.5 to 97 mmHg, P = 0.25), and PaCO2 (46.5 to 54.6 mmHg, P = 0.25) all increased, whereas Lac (3.02 to 1.93 mmol/L, P = 0.25) decreased between baseline and 15 min postoxygen supplementation, without statistical significance. BMM immobilization, and reversal with NFA provided rapid and effective immobilization and recovery, respectively. Oxygen supplementation mitigated hypoxemia in all reindeer.


Assuntos
Ketamina , Rena , Animais , Medetomidina/farmacologia , Midazolam/farmacologia , Butorfanol/farmacologia , Hipnóticos e Sedativos/farmacologia , Ketamina/farmacologia , Oxigênio , Imobilização/veterinária , Imobilização/métodos , Frequência Cardíaca
15.
Mol Pharmacol ; 105(4): 272-285, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38351270

RESUMO

The signal transduction protein, regulator of G protein signaling 4 (RGS4), plays a prominent role in physiologic and pharmacological responses by controlling multiple intracellular pathways. Our earlier work identified the dynamic but distinct roles of RGS4 in the efficacy of monoamine-targeting versus fast-acting antidepressants. Using a modified chronic variable stress (CVS) paradigm in mice, we demonstrate that stress-induced behavioral abnormalities are associated with the downregulation of RGS4 in the medial prefrontal cortex (mPFC). Knockout of RGS4 (RGS4KO) increases susceptibility to CVS, as mutant mice develop behavioral abnormalities as early as 2 weeks after CVS resting-state functional magnetic resonance imaging I (rs-fMRI) experiments indicate that stress susceptibility in RGS4KO mice is associated with changes in connectivity between the mediodorsal thalamus (MD-THL) and the mPFC. Notably, RGS4KO also paradoxically enhances the antidepressant efficacy of ketamine in the CVS paradigm. RNA-sequencing analysis of naive and CVS samples obtained from mPFC reveals that RGS4KO triggers unique gene expression signatures and affects several intracellular pathways associated with human major depressive disorder. Our analysis suggests that ketamine treatment in the RGS4KO group triggers changes in pathways implicated in synaptic activity and responses to stress, including pathways associated with axonal guidance and myelination. Overall, we show that reducing RGS4 activity triggers unique gene expression adaptations that contribute to chronic stress disorders and that RGS4 is a negative modulator of ketamine actions. SIGNIFICANCE STATEMENT: Chronic stress promotes robust maladaptation in the brain, but the exact intracellular pathways contributing to stress vulnerability and mood disorders have not been thoroughly investigated. In this study, the authors used murine models of chronic stress and multiple methodologies to demonstrate the critical role of the signal transduction modulator regulator of G protein signaling 4 in the medial prefrontal cortex in vulnerability to chronic stress and the efficacy of the fast-acting antidepressant ketamine.


Assuntos
Transtorno Depressivo Maior , Ketamina , Proteínas RGS , Camundongos , Humanos , Animais , Ketamina/farmacologia , Transcriptoma , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/metabolismo , Camundongos Knockout , Proteínas RGS/genética , Proteínas RGS/metabolismo , Antidepressivos/farmacologia , Antidepressivos/metabolismo , Córtex Pré-Frontal/metabolismo , Perfilação da Expressão Gênica , Proteínas de Ligação ao GTP/metabolismo
16.
Transl Psychiatry ; 14(1): 116, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402231

RESUMO

Revealing the acute cortical pharmacodynamics of an antidepressant dose of ketamine in humans with depression is key to determining the specific mechanism(s) of action for alleviating symptoms. While the downstream effects are characterised by increases in plasticity and reductions in depressive symptoms-it is the acute response in the brain that triggers this cascade of events. Computational modelling of cortical interlaminar and cortico-cortical connectivity and receptor dynamics provide the opportunity to interrogate this question using human electroencephalography (EEG) data recorded during a ketamine infusion. Here, resting-state EEG was recorded in a group of 30 patients with major depressive disorder (MDD) at baseline and during a 0.44 mg/kg ketamine dose comprising a bolus and infusion. Fronto-parietal connectivity was assessed using dynamic causal modelling to fit a thalamocortical model to hierarchically connected nodes in the medial prefrontal cortex and superior parietal lobule. We found a significant increase in parietal-to-frontal AMPA-mediated connectivity and a significant decrease in the frontal GABA time constant. Both parameter changes were correlated across participants with the antidepressant response to ketamine. Changes to the NMDA receptor time constant and inhibitory intraneuronal input into superficial pyramidal cells did not survive correction for multiple comparisons and were not correlated with the antidepressant response. These results provide evidence that the antidepressant effects of ketamine may be mediated by acute fronto-parietal connectivity and GABA receptor dynamics. Furthermore, it supports the large body of literature suggesting the acute mechanism underlying ketamine's antidepressant properties is related to GABA-A and AMPA receptors rather than NMDA receptor antagonism.


Assuntos
Transtorno Depressivo Maior , Ketamina , Humanos , Ketamina/farmacologia , Ketamina/uso terapêutico , Receptores de GABA-A , Transtorno Depressivo Maior/tratamento farmacológico , Receptores de N-Metil-D-Aspartato , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Ácido gama-Aminobutírico
17.
J Pharmacol Sci ; 154(3): 203-208, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395521

RESUMO

Ketamine, an N-methyl-d-aspartate (NMDA) receptor antagonist, has attracted attention for its acute and sustained antidepressant effects in patients with depression. Hydroxynorketamine (HNK), a metabolite of ketamine, exerts antidepressant effects without exerting ketamine's side effects and has attracted much attention in recent years. However, the detailed pharmacological mechanism of action of HNK remains unclear. We previously showed that the GluN2D NMDA receptor subunit is important for sustained antidepressant-like effects of (R)-ketamine. Therefore, we investigated whether the GluN2D subunit is involved in antidepressant-like effects of (2R,6R)-HNK and (2S,6S)-HNK. Treatment with (2R,6R)-HNK but not (2S,6S)-HNK exerted acute and sustained antidepressant-like effects in the tail-suspension test in wildtype mice. Interestingly, sustained antidepressant-like effects of (2R,6R)-HNK were abolished in GluN2D-knockout mice, whereas acute antidepressant-like effects were maintained in GluN2D-knockout mice. When expression levels of GluN2A and GluN2B subunits were evaluated, a decrease in GluN2B protein expression in the nucleus accumbens was found in stressed wildtype mice but not in stressed GluN2D-knockout mice. These results suggest that the GluN2D subunit and possibly the GluN2B subunit are involved in the sustained antidepressant-like effect of (2R,6R)-HNK.


Assuntos
Ketamina , Ketamina/análogos & derivados , Humanos , Camundongos , Animais , Ketamina/farmacologia , Ketamina/metabolismo , Depressão/tratamento farmacológico , Depressão/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Camundongos Knockout , Antidepressivos/farmacologia
18.
Neuron ; 112(8): 1265-1285.e10, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38377990

RESUMO

Despite the rapid and sustained antidepressant effects of ketamine and its metabolites, their underlying cellular and molecular mechanisms are not fully understood. Here, we demonstrate that the sustained antidepressant-like behavioral effects of (2S,6S)-hydroxynorketamine (HNK) in repeatedly stressed animal models involve neurobiological changes in the anterior paraventricular nucleus of the thalamus (aPVT). Mechanistically, (2S,6S)-HNK induces mRNA expression of extrasynaptic GABAA receptors and subsequently enhances GABAA-receptor-mediated tonic currents, leading to the nuclear export of histone demethylase KDM6 and its replacement by histone methyltransferase EZH2. This process increases H3K27me3 levels, which in turn suppresses the transcription of genes associated with G-protein-coupled receptor signaling. Thus, our findings shed light on the comprehensive cellular and molecular mechanisms in aPVT underlying the sustained antidepressant behavioral effects of ketamine metabolites. This study may support the development of potentially effective next-generation pharmacotherapies to promote sustained remission of stress-related psychiatric disorders.


Assuntos
Ketamina , Animais , Humanos , Ketamina/farmacologia , Simulação de Dinâmica Molecular , Antidepressivos/farmacologia , Neurônios/metabolismo , Ácido gama-Aminobutírico/metabolismo
19.
Crit Care ; 28(1): 48, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368326

RESUMO

BACKGROUND: Tracheal intubation is a high-risk intervention commonly performed in critically ill patients. Due to its favorable cardiovascular profile, ketamine is considered less likely to compromise clinical outcomes. This meta-analysis aimed to assess whether ketamine, compared with other agents, reduces mortality in critically ill patients undergoing intubation. METHODS: We searched MEDLINE, Embase, and the Cochrane Library from inception until April 27, 2023, for randomized controlled trials and matched observational studies comparing ketamine with any control in critically ill patients as an induction agent. The primary outcome was mortality at the longest follow-up available, and the secondary outcomes included Sequential Organ Failure Assessment score, ventilator-free days at day 28, vasopressor-free days at day 28, post-induction mean arterial pressure, and successful intubation on the first attempt. For the primary outcome, we used a Bayesian random-effects meta-analysis on the risk ratio (RR) scale with a weakly informative neutral prior corresponding to a mean estimate of no difference with 95% probability; the estimated effect size will fall between a relative risk of 0.25 and 4. The RR and 95% credible interval (CrI) were used to estimate the probability of mortality reduction (RR < 1). The secondary outcomes were assessed with a frequentist random-effects model. We registered this study in Open Science Framework ( https://osf.io/2vf79/ ). RESULTS: We included seven randomized trials and one propensity-matched study totaling 2978 patients. Etomidate was the comparator in all the identified studies. The probability that ketamine reduced mortality was 83.2% (376/1475 [25%] vs. 411/1503 [27%]; RR, 0.93; 95% CrI, 0.79-1.08), which was confirmed by a subgroup analysis excluding studies with a high risk of bias. No significant difference was observed in any secondary outcomes. CONCLUSIONS: All of the included studies evaluated ketamine versus etomidate among critically ill adults requiring tracheal intubation. This meta-analysis showed a moderate probability that induction with ketamine is associated with a reduced risk of mortality.


Assuntos
Etomidato , Ketamina , Adulto , Humanos , Etomidato/efeitos adversos , Ketamina/farmacologia , Ketamina/uso terapêutico , Teorema de Bayes , Estado Terminal/terapia , Intubação Intratraqueal/efeitos adversos
20.
J Neurophysiol ; 131(3): 529-540, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38323322

RESUMO

Cortical electroencephalograms (EEGs) may help understanding of neuropsychiatric illness and new treatment mechanisms. The aperiodic component (1/f) of EEG power spectra is often treated as noise, but recent studies suggest that changes to the aperiodic exponent of power spectra may reflect changes in excitation/inhibition balance, a concept linked to antidepressant effects, epilepsy, autism, and other clinical conditions. One confound of previous studies is behavioral state, because factors associated with behavioral state other than excitation/inhibition ratio may alter EEG parameters. Thus, to test the robustness of the aperiodic exponent as a predictor of excitation/inhibition ratio, we analyzed video-EEG during active exploration in mice of both sexes during various pharmacological manipulations with the fitting oscillations and one over f (FOOOF) algorithm. We found that GABAA receptor (GABAAR)-positive allosteric modulators increased the aperiodic exponent, consistent with the hypothesis that an increased exponent signals enhanced cortical inhibition, but other drugs (ketamine and GABAAR antagonists at subconvulsive doses) did not follow the prediction. To tilt excitation/inhibition ratio more selectively toward excitation, we suppressed the activity of parvalbumin-positive interneurons with Designer Receptors Exclusively Activated by Designer Drugs (DREADDs). Contrary to our expectations, circuit disinhibition with the DREADD increased the aperiodic exponent. We conclude that the aperiodic exponent of EEG power spectra does not yield a universally reliable marker of cortical excitation/inhibition ratio.NEW & NOTEWORTHY Neuropsychiatric illness may be associated with altered excitation/inhibition balance. A single electroencephalogram (EEG) parameter, the aperiodic exponent of power spectra, may predict the ratio between excitation and inhibition. Here, we use cortical EEGs in mice to evaluate this hypothesis, using pharmacological manipulations of known mechanism. We show that the aperiodic exponent of EEG power spectra is not a reliable marker of excitation/inhibition ratio. Thus, alternative markers of this ratio must be sought.


Assuntos
Eletroencefalografia , Ketamina , Masculino , Feminino , Camundongos , Animais , Receptores de GABA-A , Ketamina/farmacologia , Ácido gama-Aminobutírico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...